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1. Exact distribution.

Let XI’XZ""’ Xn be i.i.d. having continuous distribution F. Let £ be a fixed

‘ intege~ and define a random variable YZ = max min X.. In this paper we
,Nn . C ..
1<isn-£ isj<i+d
will determine the exact and limiting distribution of Y2 n' In section 3 these

results are then applied to obtain weak and strong laws for spacings generalizing
previous work of Cheng [5]. Further these results may be of independent interest

and we mention 747 in which a similar analysis has been carried out.

Let X <X <...s X denote the order statistics and define the random
1,n 2,n n,n
index Rn by Ye’n:XRn . If TysTpseees Ty denote the ranks of xl’XZ""’ Xn, it
is clear that
‘ (1.1 R = max min r,

1<isn-£ i<j<i+f ?

Observe that Rn is independent of X X and Rn has the distribution

1,n”"""7 "n,n

of the permutation statistic defined by the right hand side of (1.1) with all
permutations equally likely. 1In the following we take Rn as defined on the space
of permutations of 1,2,...,n. Then YZ,n d XR , that is, we have equality in
distribution. "t

We introduce some convenient terminology. Define an r-component of a permu-

tation as a collection of consecutive entries each of which is greater than r

and the collection is maximal with respect to this property. The size of an r-
component is defined to be the number of elements in the component. Further let
8 . =gl . equal the number of permutations on n elements with

jly'-') J‘e Jl"", Jz
exactly jk r-components of size k and no r-component of size greater than £.

Note
(1.2) #(R_<r) = § B, .
n 13 SRS LA 4
£
s where # denotes cardinality and In_1_={1_=(31,..., Jl): tzl t]t =n-r and g s

a nonnegative integer}.

i . ———




B

; ; may be evaluated by the following elementary counting argument.
1,..-, z

First select out of Zf jt places j1 places for 1-components , j2 places for 2-

components, ..., jl places for £-components, This is done in (Zf jt)!(nf jt!]-l
ways. Next arrange the numbers r+l,..., n in one of (n-r)! ways and the numbers

1,..., r in one of r! ways. Finally choose Xf jt spaces among the r+l spaces

r+l
separating the numbers 1,..., r. This is done in (Zl 3 ) ways.
1 -t
Notice that a permutation counted by Bj j can be constructed as fol-
1,..., Z

lows. Designate the spaces chosen in the last step as being a l-component, 2-
component,..., or £-component according to the selection made in step 1. 1In
these spaces make the appropriately sized component by placing the numbers r+l,
., n according to the order given them by their permutation. Between these
components place the numbers 1,..., r in the order given them by their permuta-

tion. This construction is also reversible. Hence

(G *i+... 450!
(1.3) B. =122 g [T,
APERTRP PR PR YIS PY Jytee iy

Therefore by (1.2) and (1.3) we have proved the following.

Theorem 1.1

Let Xl’XZ" . Xn be i.i.d. with continuous distribution F. Then
n
P{Yz,nsx}= ZP(Xr,nSX)P(Rn”)
r=1
where
(n-r)Ir!(r+1)! 1 ¢ .
(1.4) P{R sr}= o = I ={j: Y tj, =n-r}
n n! jef Mo j t(re1-zv j )1 M7 1t
=~ "n-r 17t 17¢"°

Remark: Note Theorem 1.1 remains true if the Xi are assumed only to be exchange-
able.
The distribution of Yl n can be obtained in another way which yields a simpler
H

expression than that given in Theorem 1.1. For A <{1,2,..., n} let M(A) =

max{Xi, ieA} and W(A) = min{xi, ieA} with the convention W(§) ==. Let Ek ¢




equal the class of all k element subsets of {1,2,..., n} which do not contain

an interval of length greater than £. Then

n n
(1.5) Py, sx}=J 5 PNA) > x, M(AS) sx}= T #(E, (1 - FON " K x)
(,n k:‘e
k=0 AcE k=0
k,2
To evaluate #(E, ,) we partition E into the following sets. Let B, .
k,£ k,Z Jpe--eady
be the class of all k element subsets of {1,..., n} containing j; intervals of
length 1 and no interval of length greater than £. Then
(1.6) #( Y= ) #(B, ).
Ek"e J_elk Jl:'--9 Je
#(8. . ) is obtained by the following counting argument, Consider

Jyseees J
1 e
n-k blocks into which integers will be put and the n-k+1 spaces between the

blocks. Among these n-k+1 spaces choose j1 to be designated as a single element
space, j2 for a two element space,..., ﬁz for an {-element space. Then a k ele-
ment subset of {1,..., n} belonging to le’..-' 5z is obtained by writing the
numbers 1 to n in their natural order putting one integer in each of the n-k
blocks and j.1 consecutive integers in a space designated as an i-element space.

The k-element set is then obtained by choosing the numbers put into the spaces.

Hence

-k+1) !
(1.7) "8 i) = (n-k+1) .
| S 4 m Jt!(n-kﬂ-,1 Jt)~

Theorem 1.2
Under the assumptions of Theorem 1.1 we have
k

) (n-k+1) ! (1-F(x)) *F" ¥ (x)
el !(n-k+1-zf i)

(1.8) P{Yt’ns x} = :
30 My I

If the X, are assumed only to be exchangeable and F(k)(x)= P{W(A)>x,M(A°)5x}

where A < {1,..., n} is any k element subset then
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) (n-k+1) 1F ) (x
I

n
(1.9) ply, <x} =}
£ = 1(n-k+1-zf ip!

k Hf It
Proof: (1.8) is immediate from (1.5), (1.6), and (1.7) while (1.9) follows for

the same reasons except that in (1.5) the expression (l-F(x))an_k(x) is re-

placed by F(k)(x).

2. Limiting distribution

In this section we derive the asymptotic behavior of Y[ n Preliminary to

b
this work we obtain an asymptotic result for the permutation statistic Rn' In
our analysis we rely on a method for obtaining the asymptotic behavior of sums

with positive terms. A description of this tool may be found in the expository

paper 31,
Lemma 2.1

Let Rn be the permutation statistic defined in (1.1) and having distribution
given in (1.4). Then

n-Rn 0, x<0
(2.1) lim P{—U-[—- < x} = { Ay } .
n +1 X , x20

nreo l-e

Ezggﬁ: In order to obtain the asymptotic behavior of the sum in (1.4) we first
locate the maximum summand and introduce a change of variables so that the largest
term occurs at the zero point.

Observe that if j;,..., jz are defined as the solution to the equations

iy + 233 +...+£jz =n-r

(2.2)

N . . e t-1
(];) = J;(r-J; - -JE) , t=2,3,..., L

then the maximum summand in (1.4) occurs in a suitable neighborhood of (j;,...,jz).
1,
- . 3 s . = 3% s o : .
Let hi = (J;) , i=2,..., £ and I it + xihi, i=2,..., £ where x; is a fractional
index with step size (hi)'l. Making the change of variables in (1.4) and restric-

ting attention to a neighborhood of the maximum summand, we consider




I3 £

3
r) et (r1) ! o , -1
(2.3) (r-x)iri(rel)! y rg(J:+xtht)!(n-r-gtjt—gtxtht)!1

T -
o T(r+l1-)(t-1)j*+)(t-1)x h_)!]
2 tz tt

where the summation is over the X, such that xs has step size h;l and max |inSA

2<i<t
where A is a fixed positive constant. Then with max ]xil <A, Stirling's formula
2<igd
and (2.2) we have :
ti, -(t-1)3,
1 1 =(1* X - *
=G Tlr-iy-e-ip) h.v2m

X
(1+0(2))exp (G Ten(1+ H-11} , t=2,..., L.
It t he

Similarly
£

;
N _ s % “1 el _1_ s T _ L 11
ipt=an »’27T.11(l'fO(J-ik))exv{J1 £n(1 K gtxtht) 11} .

2

Therefore using (2.2} aund Zn(l+x)==x-—%? + 0(x3) as X > 0 it can be checked that

ﬁj '—(j*)“‘exp{'fx2 §j*+0(‘ +j§)}
t= 3 - Rt I
1 t 1 5 t 1 t ht 3

£ £ -(t-1)j
i

f(r- ] 3 ChyTm Y z‘wj‘;‘(m(;‘?)

t=2 t=1

where m=n-r.

Therefore we find the expression at (2.3) equals
L.,

2. -
m Ut melydg 1,72
(2.4) exp{mln(s3) + 2rln(1 r—7) +nén(1 - = )}(1+0(h-+F))
N r- ljz L -1
g2
1
1 » “ipXe
E[;::“’E €
2 2m ht
Since the X5 have step size h;l we have
2
2 X
1 * -’/ngt 7, -

Ye st Al e Zax®l asnaw

A —
z/iﬁht V2




so that it suffices to consider

2

I7j* m+21];
(2.5) exp{an(.m—*) +2rén(1 + L) +ntn(l - = )} .
3 r-I)5

'*

m
Let x = ——-Z—— and E_T . Then by (2.2) we have
- %

23¢ =213t
£ t
(2.6) }tx =g .
1
k . K+1
For f(x) _zk -0 X +R(x) with R(x) = 0(x ) as x » 0, let Tf(xﬂr =
0sr<K. Using (2.6) we observe
+
s (2.7 5'-“17 ; 5 (t+1)x - (Le1)xE - (2e2)E =1 (1-x) 72
i
: (2.8) (1+—18H2_ +2f xt)? = r(1-x)‘21b1 Loty
r-13%
, 2.
m+y i * £
; (2.9) 1- n1 t =r1+e+§f SRR SR ICTS 0T S B LN S 2

t=0

. exp{men( (1-x)‘21bl - s ot - ey xE

2+1

+2
VR 2

+ rln([(l—x)‘2 +0(7(z )

ndn(T1-x)" +l)}

2 £
1£+1 - (£+2)x

n

i3 iy

t 2 1 2+

exp{-(£+1)m( )" - 2r( )
”'513'; "'513'2

i i
+ n(2s2) (——) & Lo (—3— )
I3 r-2)3
]
j*
(2.10)  + (o= - ED)

LT
! r lJt

Yy - (DX (22

- (£+2)x

Therefore by (2.7), (2.8), and (2.9) we see that (2.5) can be written

e Bdbier o

k
HENL R

£+

£1-1




2

By taking m=an+1 we have that m~'ji, r~n, as n + «, Hence (2.10) is

asymptotic to
1

B £35Y

(2.11) exp{-xl+1 +0(n )}

Finally outside the neighborhood of the maximum summand we have that

£
(n-r)Ir!(r+1)! o** - L % £ -1
r) ;!(r ) z rtz?(Jt+xtht)!(n_r-22tJt —thxtht)!]

. f(r+1-2§(t-l)j; +;§(t-l)xtht)!1'l

2
£+1 -
(2.12) =X rl-fffA e 2

v 2T

dx)(z_l)lo(l) as n >

* % -
where f denotes the summation over the X, such that X5 has step hil and
max Ix.)>‘A. Hence Lemma 2.1 holds by (2.11) and (2.12).
2<i<t !

Lemma 2.1 and results of Balkema and de Haan 711 and 2] allow us information
on the asymptotic behavior of Yi n even when classical extreme value theory does
not apply. However, we must allow random normalization in the following weak
limit results. Since the proofs of Theorem 2.1 and Theorem 2.2 are the same as

the proofs of Proposition 6 and Proposition 8 of 41, we give only statements of

the Theorems.

Theorem 2.1

Let Xl,Xz,... be an i.i.d. sequence with distribution F satisfying

(i) F(x) <1 , -o<x<m

(ii) F(m)'F(ulz > Xlogr , 0<r<m
(1-F(u)) 2
xR
as u » » for some A > 0. Let Z, = E’n where f denotes the right continuous
£(3)
n

inverse of F. Then




241 241

lim P{z_<2z} = f; d(Aw 2 an)(£+l)w£e~w dw , O<z<
n-o n 5

u
where ¢(x) = fx —1—-e 2 du.

v
Remark: Tt can be checked that the hypothesis of Theorem 2.1 is satisfied for
F of the form F(x) =1 - ¢(£nx) -(2/0) for x large. By classical results in extreme

value theory, such distributions do not belong to the domain of attraction of any

extreme value distribution.

Theorem 2.2

Let F be a distribution function with upper endpoint y; which has a strictly

u(y)

] positive density F'(y) =e for y in a left neighborhood of Yy Suppose F

satisfies one of the following conditions:
(i) 1-F(y')~1-F(y) for y >y, implies F'(y'} ~F'(y),

F'(y)(1-F(y))

(ii)
(Fron?

is bounded in a left neighborhood of Yy

(iii) F' varies regularly in y,- with exponent p #-1,
& 1

(iv) 1limsup —EZLXl—f <1 or liminf —E:£X1—7 > 1
y*y - (u'(y)) y*yy - (u'(y))

Then if f denotes the right continuous inverse of F, we have

1A

lim P{ g’? n R x} = ¥(x) , -w<x<=

Remark: The conditions of Theorem 2.2 are satisfied for the normal, Laplace,
Cauchy, beta, gamma distributions and all limit distributions for extreme order

statistics Xk n with k fixed or n-k fixed.
]

Let V. = min X., i=1,..., n-£. Then Y£ = max V. and the Vi form
boisjsisl M 1sisn-g

an £-dependent stationary sequence, that is Vi and Vj are independent if |i-j|>Z.




Extreme value theory for dependent stationary sequences has received considerable

attention. A basic result which relates the asymptotic behavior of the maximum
of a stationary sequence to the asymptotic behavior of the maximum of the associa-

ted i.i.d. sequence is the following:

Let {En, nz1} be a stationary sequence and let Fs (x) = pP{E, sx,...,E. <x}.

L, 1 i
1’ ''n 1 n
Condition D(un) is said to hold if for any integers 15i1<...<ip<jl<...<qun with

j, -1 _2>4£ we have
Jl p
|F. .. . (u) -F, . (uU)F. (u)| < a
ll"'lle"'Jq n 11...1p n Jl...Jq n n,t
where “p = o(1) for some sequence £n= o(n). Condition D‘(un) is said to hold
’n
for the stationary sequence {En, nx1} if

ﬁgk]

1im n P{&>u_, £.>u} > 0 as k » o,

e jo2 1 'n> 7j 'n

In 71 it is shown (Theorem 3.5.2) that if Mn = max £, and ﬂ = max ﬁ. where

A 1<i<n 1gisn
the £, are i.i.d. with the same underlying distribution as the €i then if for

every x conditions D(u ) and D'(u_) hold where u_ = x/a_ + b , a_>0, we have
n n n n n’ n

lim PIM_< X +b } = G(x) , -o<x<o
n a n
n->=x

if and only if

A

lim PM_<+b } = G(x) , -wo<x<o |
n a n

n >co

Therefore in view of the above result the asymptotic behavior of the max Vi
will be exactly the same as if the v, were independent once D(un) and D'(un) have
been established where u is determined by (l-F(un))z+l = ;i+0(%0 as n » < where
F is the underlying distribution of the Xi. Such a sequence {un, nx1} exists

for F belonging to the domain of attraction of an extreme value distribution.

Finally the verification of Conditions D(un) and D'(un) is easy.
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In order to establish a strong law result in section 3 we need the following

result.

Theorem 2.3

Let {Xn, n>1} be an i.i.d. sequence with underlying distribution F. Let i

2 _ o)

- max min X.. If X is any sequence such that n(l-F(xn)e+
1<i<n-£ igj<i+l J .

Yl,n_
then

P{Yz’nan} = (1 +0(fn(1-F(xn))£1_l)

+ O(nfl-F(xn)]£+2)exp{-n(l-F(xn))£+1} .

Proof: Since the technique to obtain the asymptotic behavior of YZ n is the
& same as the one used for Rn’ we present a sketch only. 1In order to obtain the
asymptotic behavior for

Hoo = § PRI
(,r)ed Hjt!(r+1-2fjt)!

where J = {(l,r): Osjt, r, t=1,2,..., £ and thjt =n-r}, we find that the maxi-

mum summand occurs in a neighborhood of the point (j*,r*} satisfying

£
(i) ) tj*=n-r*
1
S . ¢ .. (t-1)
(2.13) (i) OGP = G- in 7, =2, ¢
1
£ 2
(iii) ar*jy = (c* -z i
where <x==F(x)(1-F(x))_1
By the usual calculations we find that
o n, r.n/2 uz
(2.14) H(x) = (3359 (aff (1+0(3))
] let u = aji/r*. Then by (2.131ii) we find that j;/j; = (u/n)(t'l) so that

- - - - - £+1
from (2.13 iii) u 2 = (u 2-a lZf=é (u/a)t)z which implies (1 +a 1)u-—(u/a] +

0(a-(£+2)) =1. Hence

e an —
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a

(2.15) us=—3

+ (1 +a)-(£+1) +0(a'(£+2))

By (2.14) and (2.15) we find
Hx) = (1+0o(n”tady)

Qa

T Q1 +(x)—(£+1) +O(a_(£+2))}

exp{nfn (%) - nén(

- a+0n by v oena” E* Dy explonr )"

proving Thecorem 2.3.

3. Weak and Strong Laws for Spacings.

In this sectic e derive weak and strong law results for a particular function
of the spacings. Let {Un, n>1} be i.i.d. uniform on (0,1} random variables. Let

b <...<U n be the order statistics for U

1.n - ERRRE Un' Then the random variables
Si,m—l = Ui,n' Ui-l,n’ i=1,..., n+l are called the spacings divided by Ul""’U n
where UO,n=0 and Un+1,n = 1.

Let Mf_,n ;] = max min Sj,n+1' The quantity Ml,n played a role in

lsisn+l-£ i<j<i+f
the work of Marron [8) and Chow, Geman and Wu 67 in cross-validated kernel den-

sity estimation. Statistical properties of M were analyzed in Cheng [57.

1,n

Our first result gives the exact distribution of M£ n’
’

Theorem 3.1

~13

n-k
' . (n-k'l'l)z!:l. E (_l)t(n;k) {rl—(k+t)x1+}n_l
k=0 J_eIk IleJt!(n-tl—k- 1Jt)! t=0

P{Mz’n <x} =

where X, =X if x>0 or=0 if x<0.

Proof: The result follows from Theorem 1.2 and the fact that

P{S, >x,...

1.n ., S _<x}

X
' n,n

. Sk,n> Sk+l,nsx"'

n-k
= 7 DO IN-gen !
20

t

which was shown in 51, p. 3.
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To obtain an asymptotic result for MZ n the following representation will

be useful.

Lemma 3.1 (Pyke) Let {Xn, n21} be i.i.d. exponential random variable with mean

n

one., Let T = L. X. Then
n i=l "i-
(s, S s, )G/, /T X_/T)
1,n” “2,n”"""’ "n,n 1" n* 72" 'n*"""> "’ 'n’-
Theorem 3.2
£nn

1im P{M < XMy exp(-e” —oocx <o

L o O
Proof: Let ZE q = max min X, where the Xi are i.i.d., Xi ~ 1 —e_x, and

n 1<i<n-£ i<j<i+f
let Tn =2 Xi' Then by Lemma 3.1 we have

1
: x+£nn Z ,n_ x+fnn
p{M +1)n} = p{Z2— < +1)n}

But «Tn/n) - 1)4&nn B1lasn~+o see [51, p. 7. Therefore it suffices to consider

P{ZLn < (x +£nn)z—%}

Since the variables W, = min X, satisfy D(u_ ) and D'(u_) with u_ given by
1 ioycivg n n n
-(£+Du x 77
p{w,:»un} =e n ==, we have that the limiting distribution of 22 n is the
1 ’

same as if the variables wi were independent. Hence the Theorem holds. Alterna-
| tively we may apply Theorem 2.3 with xn=(l/(£+lD (x+€nn) .

Finally we conclude with a strong law result for the spacings. With Theorem

2.3 established it is easy to check that the method of proof of Theorem 4.8 in

F51 carries over with obvious modifications to the present case. Therefore, we

only state the result

Theorem 3.3

With probability one

(£+l)nMZ n

lim ————~ =1
- logn

PSS X -
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